Inspired by that last Astrotropes post of mine, here is a very circular graphic showing kinetic energies of various things, fictional and non-fictional. Go and check the other post for some more details, and mind out for any spoilers.

(click to humongify)

Essentially, there are only two types of energy in the universe. Kinetic energy and potential energy. Moving objects (like asteroids and tennis balls) have kinetic energy, and if a moving object strikes something, that energy is transferred. Pretty much everything also contains potential energy, waiting to be released. That could happen by detonating it, in the case of a stick of dynamite, or by eating it in the case of a doughnut. Also, a doughnut contains more potential energy than a stick of dynamite! How wild is that!

The sizes in the graphic are scaled logarithmically. Double the size means 10 billion (1010) times as much energy. Which makes some things a little tricky to discern, but it was the only realistic way to fit a black hole collision and a cosmic ray particle on the same graphic. I mean, I tried a linear scale, but, well…

So yeah, a black hole collision releases about a hundred thousand million trillion trillion trillion⭐️ times as much energy as a cosmic ray particle, and I figure most people don’t have screens that large.

Also, yes, the most energetic cosmic ray particle ever detected was nicknamed the OMG particle. With good reason too. A single proton travelling at 99.99999999999999999999951% the speed of light, and consequently carrying the same energy as a baseball is not the kind of thing we normally detect here on Earth!

⭐️ This sounds like hyperbole, but it’s really not. That particle was travelling with 48.07 J of energy, while two colliding black holes release 5.39 × 1047 J!


About Invader Xan

Molecular astrophysicist, usually found writing frenziedly, staring at the sky, or drinking mojitos.
This entry was posted in physics, Sci Fi. Bookmark the permalink.

One Response to Energy!

  1. Pingback: Kinetic Energy! – MeasurementDataBases for Industry & Science

Share your thoughts...

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s